Расчет дроссельной шайбы в системе отопления

Способы и последовательность балансировки СО

Провести регулировку можно двумя способами:

  • По количеству теплоносителя исходя из расчетных значений по расходу.
  • По температуре на каждом отопительном приборе в контуре.

Первый метод применяют, если система отопления выполнена со всеми необходимыми расчетами по расходу теплоносителя на каждом отдельном участке контура. Обычно, такие данные являются неотъемлемой частью проекта. Кроме этого, потребуется наличие регулировочной арматуры на каждом контуре СО и специального прибора для балансировки системы отопления, который подключается к балансировочным вентилям, расположенным на «обратке» каждого контура.

Суть данного способа в определении реального и регулировке необходимого (приближенного к расчетным) расхода теплоносителя.

  • Достоинство данного способа: точность.
  • Недостатки: сложность реализации и наличие дорогостоящего анализатора.

Второй метод применяют, ели требуемых расчетов для системы отопления произведено не было. Главными приборами, которые будут отвечать за настройку, являются балансировочные краны для системы отопления, которые необходимо будет установить на обратном трубопроводе из каждой батареи. Потребуется поверхностный (можно инфракрасный) термометр, благодаря которому будут производиться замеры температуры поверхностей всех отопительных приборов.

Процесс балансировки СО производится на каждом отопительном приборе каждого контура отдельно. Допустим, в ветке находится ПЯТЬ радиаторов. На самом ближнем (к теплогенератору) отопительном приборе, кран открывается на 1 оборот. На втором – на два и так далее. На последней батарее балансировочный вентиль для системы отопления открывается полностью. Далее производятся замеры температуры на радиаторах, равномерность нагрева которых регулируется поворотами вентилей в ту или другую сторону.

  • Достоинства: Простота процесса
  • Недостатки: низкая точность балансировки; длительность процедуры замеров температуры благодаря инерционности СО.

Подобная последовательность действий нужна и при балансировке однотрубных СО. Разница лишь в том, что для настройки количества теплоносителя, попадающего в радиаторы, применяются игольчатые вентили.

Существует и третий способ балансировки СО – дроссельными шайбами, установленными либо на подачу, либо на обратку. Шайбы имеют различное проходное сечение, которое рассчитывается для получения расчетного значения расхода теплоносителя. Устанавливаются шайбы во внутреннюю резьбу арматуры.

Выводы. Балансировка необходима для нормального функционирования СО. Делается она после окончания монтажных работ, замены радиаторов и оборудования, изменения конфигурации отопительной системы. Для выполнения настройки требуется специальное оборудование – балансировочные вентили.

Совет: Для максимальной эффективности проведения данных мероприятий, рекомендуется воспользоваться услугами высококвалифицированных специалистов, которые не только выполнят необходимые работы, но и будут нести за них ответственность.

Качественное обустройство отопительной системы не заканчивается монтажом всего необходимого отопительного оборудования – котел, насос, радиатор и т.д. Этого недостаточно для того, чтобы отопление работало эффективно и справлялось с возложенными на него функциями «на ура». Любая система нуждается в грамотной регулировке и настройке, и отопительная не является исключением.

Для того, чтобы вся система работала правильно, ее нужно настроить

Для этого проводится такая процедура, как балансировка. Цель ее – распределить теплоподачу по комнатам так, как необходимо хозяину. Сегодня балансировку можно осуществить, полагаясь только лишь на свои силы, или прибегнув к помощи профессионалов.

Нередко можно встретить одно весьма ошибочное мнение, но достаточно распространенное. Некоторые люди считают, что в балансировке нуждаются только крупные здания, в то время как в частных домах и маленьких строениях она не обязательна. Естественно, это заблуждение. Балансировка является необходимым процессом для всех строений, в которых установлена система отопления, тем более для домов, в которых проживают люди. Если пренебречь ею, то тепло будет направлено на некоторые участки в избыточных количествах, а на других, наоборот, будет ощущаться его недостаток. Основополагающая «миссия» балансировки как раз и заключается в том, чтобы не допустить подобных ситуаций. Вся система – радиаторы, котел и все остальные элементы будут работать как одно целое и равномерно обогревать строение.

Балансировка требуется как для крупных зданий, так и для небольших

Эффект от установки шайб

  • Наиболее удаленные отопительные стояки обеспечиваются достаточным расходом теплоносителя и хорошо прогреваются.
  • Наиболее близкие к центральному тепловому пункту объекты не перегреваются, температура воздуха в помещениях остается комфортной.
  • Система находится в устойчивом и предсказуемом гидравлическом режиме, исключены внезапные изменения её параметров: расхода, давление, температуры и др.
  • Температура в подающем и обратном трубопроводе соответствует утвержденному температурному графику, благодаря чему снижается себестоимость производимой тепловой энергии.
  • Для потребителей перегретой воды и пара создаются гарантированные условия поддержания абсолютного давления при динамических тепловых режимах работы сети.
  • Для абонентов, эксплуатирующих системы отопления, создаются условия поддержания давления в трубопроводах на уровне не ниже 5 кгс/см2 в любой точке разветвленной сети, что позволяет предотвратить вскипание теплоносителя, либо, наоборот, образование вакуума.


Индивидуальный тепловой пункт – сердце системы отопления любого здания Источник Dvesk.ru

Стабилизация давления в системе отопления

Расширение воды в результате нагрева является естественным процессом. В этом показателе давление может превысить критическое значение, что неприемлемо с точки зрения эксплуатации отопления. С целью стабилизации и уменьшения давления на внутренние поверхности труб и радиаторы нужно установить несколько элементов отопления. Отрегулировать систему отопления в частном доме с их помощью будет намного проще и эффективнее.

Регулировка расширительного бака

Расширительный мембранный бак Представляет собой стальную емкость, разделенную на две камеры. Одна из них заполняется водой из системы, а во вторую нагнетается воздух. Значение давления в воздушной равно нормальному в отопительных трубах. В случае превышения этого параметра эластичная мембрана увеличивает объем водяной камеры, тем самым компенсируя тепловое расширение воды.

До того как отрегулировать перепад давления в системе отопления нужно проверить состояние и настройку расширительного бака. Отрегулировать давление в системе отопления можно, приобретя модель бака с возможностью его изменять в воздушной камере. В качестве дополнительной меры устанавливают манометр для визуального контроля этого значения.

Однако при значительном скачке давления этой меры будет недостаточно. Так можно отрегулировать перепад давления в системе отопления в том случае, если оно не превышает критическое значение. Поэтому рекомендуется установка дополнительных устройств.

Как отрегулировать группу безопасности

Группа безопасности отопления Эта группа приборов, включает в себя следующие элементы:

  • Манометр. Предназначен для визуального контроля работы системы отопления;
  • Воздухоотводчик. В случае превышения температуры воды 100 град избыток пара воздействует на седло клапана устройства, выпуская наружу воздух из труб;
  • Предохранительный клапан. Работает так же как и водухоотводчик, но нужен для слива избыточного теплоносителя из труб.

Как отрегулировать радиатор отопления с помощью этого блока? Увы, но он предназначен для предотвращения аварийных ситуаций во всей системе. Для батарей необходимо устанавливать другое устройство.

Кран Маевского

Конструктивно он схож с предохранительным клапаном. Особенностью являются небольшие размеры и возможность монтировать на патрубок радиатора с небольшим диаметром.

Для того чтобы правильно отрегулировать батареи отопления, нужно знать в каких случаях применяется кран Маевского:

  • Устранение воздушных пробок в радиаторах. Открыв клапан, выпускается воздух до тех пор, пока не потечет теплоноситель;
  • Настройка параметров критического значения давления. При возникновении аварийного расширения воды клапан открывается и происходит стабилизация давления в радиаторе.

Конструкция крана Маевского Последняя функция является дополнительной и чаще всего не применяется. С этой задачей лучше всего справляется группа безопасности. Правильная регулировка отопления в доме должна включать в себя все вышеперечисленные элементы.

Способы балансировки

самые популярные следующие способы балансировки отопительных систем:

  • по расходу носителя тепла;
  • по балансу температур.

По расходу носителя тепла

Это более точный и прекрасный способ. Для него понадобится проект системы трубопровода и оценочный расчет жидкостного расхода в каждом ее сегменте. Примерный оценочный расчет можно сделать своими руками, для более точного понадобятся услуги инженера- теплотехника. На каждом сегменте должна быть смонтирован балансировочный клапан.

Работают с устройством в следующей очередности:

  • клапанами- партнерами вся система обогрева разбивается на некоторые участки;
  • ведутся обмеры через балансировочные клапаны в каждом модуле, устанавливается практический расход носителя тепла на участке;
  • данные которые получены сравниваются с расчетными значениями расхода для этого сегмента;
  • проходит регулировка клапанов и повторная серия измерений.

Если доступен ПК с установленной программой, то задача ориентировочного расчета становится проще:

  • данные измерений передаются на ПК, где выстраивается тепловая и гидравлическая модель системы;
  • программа исполняет балансировку, выдавая советы по установке каждого клапана;

Дальше котельная мощность ставится равной расчетному значению.

Для балансировки системы обогрева котельная мощность ставится равной расчетному значению

Сегодня на рынке предлагаются также балансировочные модули с вмонтированным измерителем расхода, разрешающие исполнять грубую настройку жидкостного расхода без использования очень дорогого измерительного устройства. Для неотопительных систем в маленьких зданиях такой точности в реальности достаточно.

После выполнения балансировки каждый трубный змеевик (или раздел сети) будет получать и отдавать в пространство помещения строго некоторое количество энергии тепла, не зависящее от расстояния между отопительным прибором и котлом, этажа и прочих моментов. Хорошими качествами гидравлическая балансировки системы обогрева считаются:

  • большая точность настройки показателей системы;
  • возможность сэкономить до 10% энергоносителей если сравнивать с несбалансированной системой;
  • удаление шумов потока в ближних к котлу батареях и трубах.

К минусам как правило относят:

  • большая цена балансировочных клапанов и многофункционального измерительного устройства;
  • необходимость проектной гидравлической схемы с расчетами значений потока в каждом сегменте.

Для непростых систем отопления, а тем при балансировке системы обогрева дома в несколько этажей, это только один способ увеличить результативность системы обогрева.

По температуре

Нередко домовладелец, особенно не так давно его приобретший, встречается с ситуацией, когда дом нагревается неодинаково, горючее тратится неэффективно, а никакой документации на систему нет. Отсутствуют и тепловые расчеты.

Самым обычным выходом в данном случае будет регулировка каждого отопительного прибора по температуре поверхности. На каждый трубный змеевик придется установить регулировочный вентиль с термостатическим клапаном. Понадобится также пирометр или электронный контактный термометр чтобы провести измерения температуры батареи.

Работы по балансировке отопительной системы с двумя трубами ведутся в следующей очередности:

  • на наиболее удаленном от водонагревателя электрического накопительного теплообменнике вентиль открывают полностью;
  • проходя по линии трубы от дальнего отопительного прибора к ближнему, вентиль каждого оборачивают на пропорциональное их числу численность оборотов.
  • измеряют температуру на выходе каждого теплообменного аппарата;
  • двигаясь от дальнего к ближнему, крепят или откручивают вентиль поэтому, чтобы его температура стала равна предыдущему;
  • между регулировкой и измерением необходимо делать паузу в 5-10 минут для стабилизации потока носителя тепла.

Положительными качествами температурной балансировки являются

  • доступность регулировочной арматуры;
  • простота регулировки;
  • не требуется гидравлическая схема и правильные расчеты.

К минусам необходимо отнести:

  • невысокая точность регулировки;
  • меньшая энергетическая эффективность
  • зависимость режима температур каждого отопительного прибора от показателей всех других;

Подобный вариант используем для балансировки системы обогрева собственными руками в маленьких постройках.

Для чего нужна дроссельная шайба на отопление

Исполнительные схемы магистральных и внутриквартальных тепловых сетей имеют десятки, а порой и сотни ответвлений и абонентских узлов. В них входят источники тепловой энергии — котельная или центральный тепловой пункт, система трубопроводов, компенсаторы, отводы, запорно-регулирующая арматура и контрольно-измерительные приборы, установленные в тепловых камерах, тепловых колодцах и в абонентских узлах каждого жилого дома, подключенного к центральной тепловой сети. 

На каждом элементе в теплосети подающий теплоноситель теряет часть своего напора. Чем протяженность выше, тем больше будут потери по ходу движения воды. В конце концов, если тепловая система будет рассчитана не правильно и разбалансирована, а насосное оборудование установлено с малой производительностью, может случиться так, что теплоноситель к конечному потребителю не поступит вообще.

Дроссельная шайба в системе отопления нужна для оптимального распределения нагревающей среды, между всеми потребителями тепловой энергии подключенных к одному источнику теплоснабжения. Они выполняются по предварительным расчетам, указанных в соответствующем разделе проекта теплоснабжения либо по результатам наладочных испытаний тепловых сетей. Такие испытания по требованиям директивных документов должны проводиться не меньше, чем один раз в пять лет или после реконструкции теплосетей. Традиционные шайбы изготавливаются с одним проходным отверстием и устанавливаются между фланцами на вводной задвижке элеваторного узла на вводе в дом. Такие конструкции имеют недостаток, в связи с тем, что в случае изменения режима, они требуют перерасчета и переустановки, что довольно затратное мероприятие, так как для установки потребуется сливать весь теплоноситель.

В последнее время приобрели популярность регулируемые шайбы, конструкция которая позволяет менять проход среды, а следовательно их можно использовать для разных тепловых режимов, которые устанавливаются без разгерметизации тепловой сети.

Специалисты утверждают, что впоследствии того, как в абонентский узел жилого дома были установлены расчетные шайбы, расход теплоносителя снизился в 3 раза, при этом качество теплоснабжения значительно выросло. Это действительно возможно, за счет роста скорости движения среды в межтрубном пространстве и радиаторах, после чего увеличивается общий теплосъем на объекте, то есть растет разность температур теплоносителя на входе и выходе из дома. Такая регулировка внутридомовых систем отопления приводит к повышению качества работы магистральных сетей и источников тепла, поскольку уменьшается количество работающих сетевых насосов и снижается потребление электроэнергии на передачу тепловой энергии. 

Проблемы балансировки отопительных контуров

Массу проблем балансировки вызываются плохим качеством проектирования и неверно подобранной схемой разводки.

Так, к примеру, если для строения у которого несколько этажей использована одноконтурная схема тройника – до дальних от стояка батарей на верхнем этаже будет доходить лишь небольшая частичка тепла, а на нижнем этаже придется жить с открытыми окнами. Если разводка сделана по схеме с одной трубой, то балансировка теплоснабжения проходит на каждом этаже. В данном случае понадобится также балансировка стояков между собой.

Однако, даже если разбить систему на некоторые контуры для любого этажа, при большой длине трубо-проводов тепла может также не хватить для тупиковой ветки дальних комнат.

Подобная ситуация позволяется установкой 2-ух или более контуров на этаже. Длину труб в контурах пытаются выполнить примерно равной- так их легче будет уравновешивать. Это может привести к очень высоким расходам на трубы и установку сортировочных коллекторов с регулирующей арматурой, но быстро оправдается за счёт экономии энергоносителей.

Особенности расчета сечения металлических труб

Для больших отопительных систем с трубами из металлов необходимо учитывать потери тепла через стенки. Потери не так и велики, но при большой протяженности могут привести к тому, что на последних радиаторах температура будет совсем низкой из-за неправильного выбора диаметра.

Рассчитаем потери для стальной трубы 40 мм с толщиной стенки 1,4 мм. Потери рассчитываются по формуле:

q = k*3.14*(tв-tп)

где:

q — тепловые потери метра трубы,

k – линейный коэффициент теплопередачи (для данной трубы он составляет 0,272 Вт*м/с);

tв — температура воды в трубе — 80°С;

tп — температура воздуха в помещении — 22°С.

Подставив значения получаем:

q = 0,272*3,15*(80-22)=49 Вт/с

Получается, что на каждом метре теряется почти 50 Вт тепла. Если протяженность значительная, это может стать критическим. Понятно, что чем больше сечение, тем больше будут потери.

Если нужно учесть и эти потери, то при расчете потерь к снижению тепловой нагрузки на радиаторе добавляют потери на трубопроводе, а затем, по суммарному значению находят требуемый диаметр.

Но для систем индивидуального отопления эти значения обычно некритичны. Тем более что при расчете теплопотерь и мощности оборудования, чаще всего округление расчетных величин делают в сторону увеличения. Это дает определенный запас, который позволяет не делать столь сложных расчетов.

Важный вопрос: где брать таблицы? Почти на всех сайтах производителей такие таблицы есть. Можно считать прямо с сайта, а можно скачать себе. Но что делать, если нужных таблиц для расчета вы все-таки не нашли.

Можете воспользоваться описанной ниже системой подбора диаметров, а можно поступить по-другому.

Несмотря на то, что при маркировке разных труб указываются разные значения (внутренние или наружные), с определенной погрешностью их можно приравнять.

По расположенной ниже таблице можно найти тип и маркировку при известном внутреннем диаметре. Тут же можно будет найти соответствующей размер трубы из другого материала. Например, нужен расчет диаметра металлопластиковых труб отопления. Таблицу для МП вы не нашли. Зато есть для полипропилена.

Подбираете размеры для ППР, а потом по этой таблице находите аналоги в МП. Погрешность естественно, будет, но для систем с принудительной циркуляцией она допустима.

Двухтрубный контур в частном доме

Для начала немного обобщим. Возьмём для примера расчет диаметра труб из полипропилена для отопления в частном доме. В основном для контура применяют изделия сечением 25 мм, а отводы к радиаторам ставят 20 мм.

Благодаря тому, что размер труб для отопления в частном доме, использованных в качестве патрубков к батареям меньше, происходят следующие процессы:

скорость теплоносителя растет;
улучшается циркуляция в радиаторе;
батарея прогревается равномерно, что важно при нижнем подключении.

Также возможны комбинации диаметра основного контура 20 мм и отводов 16 мм.

Чтобы убедиться в вышеуказанных данных, можно провести расчет диаметра труб для отопления частного дома самостоятельно. Для этого потребуются следующие значения:

квадратура помещения.

Зная количество отапливаемых квадратных метров, мы можем рассчитать мощность котла и какой диаметр трубы выбрать для отопления. Чем мощнее нагреватель, тем большего сечения изделия можно использовать с ним в тандеме.

Для обогрева одного квадратного метра помещения потребуется 0,1 кВт мощности котла. Данные справедливы если потолки составляют стандартные 2,5 м;

теплопотери.

Показатель зависит от региона и утепления стен. Суть в том, что чем больше теплопотери, тем мощнее должен быть нагреватель. Чтобы обойти сложные вычисления, которые в приблизительном расчете неуместны, просто нужно добавить 20% к мощности котла, рассчитанной выше;

скорость воды в контуре.

Допускается скорость теплоносителя в диапазоне от 0,2 до 1,5 м/с. При этом в большинстве расчетов диаметра труб для отопления с принудительной циркуляцией принято брать среднее значение в 0,6 м/с.

При такой скорости исключается появление шума от трения теплоносителя об стенки;

насколько остывает теплоноситель.

Для этого от температуры подачи отнимают температуру обратки. Естественно, точных данных вы не можете знать, тем более что находитесь на этапе проектирования.

Теперь сам расчет как подобрать диаметр трубы для отопления. Для этого возьмем формулу, в которой изначально есть две постоянные величины, сумма которых составляет 304,44.

Условный проход контура, возведённый в квадрат = 304,44 х (квадратура помещения х 0,1 кВт + 20%) / теплопотери теплоносителя / скорость потока.

Последнее действие – это извлечение корня квадратного из полученного результата. Для наглядности посчитаем, какого диаметра трубы использовать для отопления частного дома с одним этажом площадью 120 м2:

304,44 х (120 х 0,1 + 20%) / 20 / 0,6 = 368,328

Теперь вычислим корень квадратный из 368,328, что равно 19,11 мм. Перед тем как выбрать диаметр трубы для отопления, еще раз делаем акцент на том, что это так называемый условный проход.

У изделий из разного материала отличается толщина стенок. Так, например, у полипропилена стенки толще, чем у металлопластика. Раз уж мы в качестве образца вяли полипропиленовый контур, продолжим рассматривать этот материал.

В маркировке этих изделий указывается наружное сечение и толщина стенок. Методом отнимания узнаем нужную нам величину и подбираем в магазине.

Для удобства воспользуемся таблицей.

По результатам таблицы можно сделать вывод:

  • если достаточно номинального давления в 10 атмосфер, то подходит наружное сечение трубы для отопления в 25 мм;
  • если требуется номинальное давление в 20 или 25 атмосфер, то 32 мм.

Расчет отопительной системы

При планировании отопительной системы для частного дома наиболее сложным и ответственным этапом является проведение гидравлических расчетов – нужно определить сопротивление системы отопления.

Ведь, берясь самостоятельно как рассчитать объем системы отопления, так и далее планировать систему, мало кто знает, что предварительно необходимо произвести некоторые графически-проектные работы. В частности, следует определить и отобразить на плане отопительной системы такие параметры:

тепловой баланс помещений, в которых будут расположены отопительные приборы;
тип наиболее подходящих отопительных приборов и теплообменных поверхностей, указать их на предварительном плане отопительной системы;
наиболее подходящий тип отопительной системы, подобрать наиболее подходящую конфигурацию. Также следует создать подробную схему расположения нагревательного котла, трубопровода.
выбрать тип трубопровода, определить необходимые для качественной работы дополнительные элементы (вентили, клапаны, датчики). Указать на предварительной схеме системы их расположение.
создать полную аксонометричную схему. В ней следует указать номера участков, их продолжительность и уровень тепловой нагрузки.
спланировать и отобразить на схеме основной отопительный контур

При этом важно учесть максимальный расход теплоносителя.

Принципиальная схема отопления

Двухтрубная отопительная система

Для любой отопительной системы расчетным участком трубопровода является тот сегмент, диаметр на котором не изменяется и где происходит стабильный расход теплоносителя. Последний параметр вычисляется из теплового баланса помещения.

Для расчета двухтрубной системы отопления следует провести предварительную нумерацию участков. Начинается она с нагревательного элемента (котла). Все узловые точки подающей магистрали, в которых происходит разветвление системы, необходимо отмечать заглавными буквами.

Двухтрубная отопительная система

Соответственные узлы, расположенные на сборных магистральных трубопроводах, следует обозначать черточками. Места ответвления  приборных веток (на узловом стояке) чаще всего обозначаются арабскими цифрами. Эти обозначения соответствуют номеру этажа (в случае, если внедрена горизонтальная отопительная система) или номеру стояка (вертикальная система). При этом в месте соединения потока теплоносителя данный номер обозначается дополнительным штрихом.

Для максимально качественного выполнения работы следует нумеровать каждый участок

При этом важно учитывать, что номер должен  состоять из двух значений – начала и конца участка

Установка элеваторного узла системы отопления

Место для его установки, во избежание проблем, должно соответствовать определенным параметрам. Необходимо полноценное помещение, в котором будет плюсовая температура, в элеваторных узлах с автоматической (погодозависимой) системой, во избежание перебоев подачи электроэнергии лучше предусмотреть автономный источник электропитания.

Не так давно я написал и выпустил книгу «Устройство ИТП (тепловых пунктов) зданий». В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно.

Вот содержание книги:

1. Введение

2. Устройство ИТП, схема без элеватора

3. Устройство ИТП, элеваторная схема

4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.

5. Заключение

Устройство ИТП (тепловых пунктов) зданий.

Отопительная система является одной из важнейших систем жизнеобеспечения дома. В каждом доме применяется определенная система отопления, но не каждый пользователь знает, что такое элеваторный узел отопления и как он работает, его назначение и те возможности, которые предоставляются с его применением.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Стандарты по строительству
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: